Proof for Euler's Identity using ODEs

Let

z=cosθ+isinθ

Differentiate with respect to θ (Imaginary numbers are just another axis)

dzdθ=sinθ+icosθ=i(isinθ+cosθ)=iz

Using Solving a variable separable differential equation under Calculus

1zdz=idθ1zdz=idθlnz=iθ+Ceiθ+C=z

letting θ=0

ei0+C=cos0+isin0e0eC=1C=0

Thus

eiθ=z=cosθ+isinθ