Proof for Dot Product

Pasted image 20250525172147.png|centre|300

Let AB, be a vector from A to B. Based on the cos rule. Cos Rule

AB=OBOA|AB|2=|OA|2+|OB|22|OA||OB|cosθ

Let OA=A and OB=B.

|A||B|cosθ=12(|A|2+|B|2|BA|2)=12(n=1(an2+bn2)n=1(bnan)2)=12(n=1(an2+bn2)n=1(bn22anbn+an2))=n=1anbn

Thus

AB=n=1anbn